
g04 – Analysis of Variance g04bbc

nag anova random (g04bbc)

1. Purpose

nag anova random (g04bbc) computes the analysis of variance and treatment means and standard
errors for a randomized block or completely randomized design.

2. Specification

#include <nag.h>
#include <nagg04.h>

void nag_anova_random(Integer n, double y[], Nag_Blocks blocks,
Integer iblock, Integer nt, Integer it[], double *gmean,
double bmean[], double tmean[], double table[], double c[],
Integer tdc, Integer irep[], double r[], double ef[],
double tol, Integer irdf, NagError *fail)

3. Description

In a completely randomized design the experimental material is divided into a number of units, or
plots, to which a treatment can be applied. In a randomized block design the units are grouped
into blocks so that the variation within blocks is less than the variation between blocks. If every
treatment is applied to one plot in each block it is a complete block design. If there are fewer plots
per block than treatments then the design will be an incomplete block design and may be balanced
or partially balanced.

For a completely randomized design, with t treatments and nt plots per treatment, the linear model
is

yij = µ + τj + eij , j = 1, 2 . . . , t; i = 1, 2 . . . , nj ,

where yij is the ith observation for the jth treatment, µ is the overall mean, τj is the effect of the
jth treatment and eij is the random error term. For a randomised block design, with t treatments
and b blocks of k plots, the linear model is

yij(l) = µ + βi + τl + eij , i = 1, 2 . . . , b; j = 1, 2 . . . , k; l = 1, 2, . . . , t,

where βi is the effect of the ith block and the ij(l) notation indicates that the lth treatment is
applied to the ith plot in the jth block.

The completely randomized design gives rise to a one-way analysis of variance. The treatments
do not have to be equally replicated, i.e., do not have to occur the same number of times. First
the overall mean, µ̂, is computed and subtracted from the observations to give y′

ij = yij − µ̂. The
estimated treatment effects, τ̂j are then computed as the treatment means of the mean adjusted
observations, y′

ij , and the treatment sum of squares can be computed from the sum of squares of
the treatment totals of the y′

ij divided by the number of observations per treatment total, nj . The
final residuals are computed as rij = y′

ij − τ̂j , and, from the residuals, the residual sum of squares
is calculated.

For the randomised block design the mean is computed and subtracted from the observations
to give y′

ij(l) = yij(l) − µ̂. The estimated block effects, ignoring treatment effects, β̂i, are then
computed using the block means of the y′

ij(l) and the unadjusted sum of squares computed as the
sum of squared block totals for the y′

ij(l) divided by number of plots per block, k. The block

adjusted observations are then computed as y′′
ij(l) = y′

ij(l) = β̂i. In the case of the complete block
design, with the same replication for each treatment within each block, the blocks and treatments
are orthogonal, and so the treatment effects are estimated as the treatment means of the block
adjusted observations, y′′

ij(l). The treatment sum of squares is computed as the sum of squared
treatment totals of the y′′

ij(l) divided by the number of replicates to the treatments, r = bk/t.
Finally the residuals, and hence the residual sum of squares, are given by rij(l) = y′′

ij(l) − τ̂l.
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For a design without the same replication for each treatment within each block the treatments and
the blocks will not be orthogonal, so the treatments adjusted for blocks need to be computed. The
adjusted treatment effects are found as the solution to the equations

(R − NNT /k)τ̂ = q

where q is the vector of the treatment totals for block adjusted observations, y′′
ij(l), R is a diagonal

matrix with Rll equal to the number of times the lth treatment is replicated, and N is the t by b
incidence matrix, with Nlj equal to the number of times treatment l occurs in block j. The solution
to the equations can be written as

τ̂ = Ωq

where Ω is a generalized inverse of (R − NNT /k). The solution is found from the eigenvalue
decomposition of (R − NNT /k). The residuals are first calculated by subtracting the estimated
treatment effects from the block adjusted observations to give r′ij(l) = y′′

ij(l) − τ̂l. However, since
only the unadjusted block effects have been removed and blocks and treatments are not orthogonal,
the block means of the r′ij(l) have to be subtracted to give the correct residuals, rij(l) and residual
sum of squares.

The mean squares are computed as the sum of squares divided by the degrees of freedom. The
degrees of freedom for the unadjusted blocks is b − 1, for the completely randomised and the
complete block designs the degrees of freedom for the treatments is t − 1. In the general case the
degrees of freedom for treatments is the rank of the matrix Ω. The F -statistic given by the ratio
of the treatment mean square to the residual mean square tests the hypothesis

H0 : τ1 = τ2 = . . . = τt = 0.

The standard errors for the difference in treatment effects, or treatment means, for the completely
randomized or the complete block designs, are given by

se (τj − τj∗) =

(
1
nj

+
1

nj∗

)
s2

where s2 is the residual mean square and nj = nj∗ = b in the complete block design. In the general
case the variances of the treatment effects are given by

var(τ) = Ωs2

from which the appropriate standard errors of the difference between treatment effects or the
difference between adjusted means can be calculated.

In the complete block design all the information on the treatment effects is given by the within
block analysis. In other designs there may be a loss of information due to the non-orthogonality
of treatments and blocks. The efficiency of the within block analysis in these cases is given by
the (canonical) efficiency factors, these are the non-zero eigenvalues of the matrix (R − NNT /k),
divided by the number of replicates in the case of equal replication, or by the mean of the number
of replicates in the unequally replicated case, see John (1987). If more than one eigenvalue is zero
then the design is said to be disconnected and some treatments can only be compared using a
between block analysis.

4. Parameters

n
Input: the number of observations, n.
Constraint: n ≥ 2 and if iblock ≥ 2, n must be a multiple of iblock.

y[n]
Input: the observations in the order as described by blocks and nt.
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blocks
Input: blocks indicates the block structure.

If blocks = Nag NoBlocks then there are no blocks, i.e., it is a completely randomized
design.

If blocks = Nag SerialBlocks then the data should be input by blocks, i.e., y must
contain the observations for block 1 followed by the observations for block 2, etc.

If blocks = Nag ParallelBlocks then the data is input in parallel with respect to blocks,
i.e., y[0] must contain the first observation for block 1, y[1] must contain the first
observation for block 2 . . . y[iblock−1] must contain the first observation for block iblock,
y[iblock] must contain the second observation for block 1, etc.

Constraint: blocks = Nag NoBlocks, Nag SerialBlocks or Nag ParallelBlocks.

iblock
Input: iblock indicates the number of blocks, b.
Constraint: if blocks = Nag SerialBlocks or blocks = Nag ParallelBlocks then iblock ≥ 2; it
is not referenced otherwise.

nt
Input: the number of treatments, t. If only blocks are required in the analysis then set nt =
1.
Constraint: if iblock ≥ 2, nt ≥ 1, otherwise nt ≥ 2.

it[dim1]
Note: the dimension, dim1 of the array it must be at least n if nt ≥ 2, and 1 otherwise.
Input: it[i− 1] indicates which of the nt treatments plot i received, for i = 1, 2, . . . ,n. If nt =
1, it is not referenced.
Constraint: 1 ≤ it[i − 1] ≤ nt , for i = 1, 2, . . . ,n.

gmean
Output: the grand mean, µ̂.

bmean[dim1]
Note: the dimension, dim1 of the array bmean must be at least max(1,iblock).
Output: if blocks = Nag SerialBlocks or Nag ParallelBlocks, bmean[j−1] contains the mean
for the jth block, β̂j for j = 1, 2, . . . , b. It is not referenced otherwise.

tmean[nt]
Output: if nt ≥ 2, tmean[l − 1] contains the (adjusted) mean for the lth treatment, µ̂∗ + τ̂l,
for l = 1, 2, . . . , t, where µ̂∗ is the mean of the treatment adjusted observations, yij(l) − τ̂l.

table[4][5]
Output: the analysis of variance table. Column 1 contains the degrees of freedom, column
2 the sum of squares, and where appropriate, column 3 the mean squares, column 4 the F -
statistic and column 5 the significance level of the F -statistic. Row 1 is for Blocks, row 2
for Treatments, row 3 for Residual and row 4 for Total. Mean squares are computed for all
but the Total row; F -statistics and significance are computed for Treatments and Blocks, if
present. Any unfilled cells are set to zero.

c[nt][tdc]
Output: if nt ≥ 2, the upper triangular part of c contains the variance-covariance matrix of
the treatment effects, the strictly lower triangular part contains the standard errors of the
difference between two treatment effects (means), i.e., c[i − 1][j − 1] contains the covariance
of treatment i and j if j ≥ i and the standard error of the difference between treatment i and
j if j < i for i = 1, 2, . . . , t; j = 1, 2, . . . , t.

tdc
Input: The second dimension of the array c as declared in the calling program.
Constraint: tdc ≥ nt.
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irep[nt]
Output: if nt ≥ 2, the treatment replications, Rll, for l = 1, 2, . . . ,nt.

r[n]
Output: the residuals, ri, for i = 1, 2, . . . ,n.

ef[nt]
Output: if nt ≥ 2, the canonical efficiency factors.

tol
Input: the tolerance value used to check for zero eigenvalues of the matrix Ω. If tol = 0.0 a
default value of 10−5 is used.

Constraint: tol ≥ 0.0.

irdf
Input: an adjustment to the degrees of freedom for the residual and total. If irdf ≥ 1 the
degrees of freedom for the total is set to n − irdf and the residual degrees of freedom adjusted
accordingly. If irdf = 0, the total degrees of freedom for the total is set to n − 1, as usual.

Constraint: irdf ≥ 0.

fail
The NAG error parameter, see the Essential Introduction to the NAG C Library.

5. Error Indications and Warnings

NE BAD PARAM
On entry, parameter blocks had an illegal value.

NE INT ARG LT
On entry, n must not be less than 2: n = 〈value〉.
On entry, nt must not be less than 1: nt = 〈value〉.
On entry, irdf must not be less than 0: irdf = 〈value〉.

NE REAL ARG LT
On entry, tol must not be less than 0.0: tol = 〈value〉.

NE INT
On entry, iblock = 〈value〉.
Constraint: iblock ≥ 2 when blocks = Nag NoBlocks.
On entry, nt = 〈value〉.
Constraint: nt ≥ 2 when blocks = Nag NoBlocks.

NE 2 INT ARG LT
On entry, tdc = 〈value〉 while nt = 〈value〉.
These parameters must satisfy tdc ≥ nt.

NE INT 2
On entry, n = 〈value〉, iblock = 〈value〉.
Constraint: when iblock ≥ 2, n must be a multiple of iblock.

NE INTARR
On entry, it[〈value〉] = 〈value〉.
Constraint: 1 ≤ it[i − 1] ≤ nt, for i = 1, 2, . . . ,n.

NE IT ARRAY
No value of it[j − 1] = j for some j = 1, 2, . . . ,nt.

NE ARRAY CONSTANT
On entry, the elements of the array y are constant.

NE G04BB STDERR
A computed standard error is zero due to rounding errors.

This is an unlikely error exit.
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NE G04BB DESIGN
The design is disconnected; the standard errors may not be valid. The design may be nested.

NE G04BB TREAT
The treatments are totally confounded with blocks, so the treatment sum of squares and
degrees of freedom are zero. The analysis of variance table is not computed, except for block
and total sums of squares and degrees of freedom.

NE G04BB CONV
The eigenvalue computation has failed to converge.

This is an unlikely error exit.

NE G04BB RES DF
The residual degrees of freedom or the residual sum of squares are zero, columns 3, 4 and 5
of the analysis of variance table will not be computed and the matrix of standard errors and
covariances, C, will not be scaled by s or the square of s.

NE ALLOC FAIL
Memory allocation failed.

6. Further Comments

To estimate missing values the Healy and Westmacott procedure or its derivatives may be used,
see John and Quenouille (1977). This is an iterative procedure in which estimates of the missing
values are adjusted by subtracting the corresponding values of the residuals. The new estimates are
then used in the analysis of variance. This process is repeated until convergence. A suitable initial
value may be the grand mean µ̂. When using this procedure irdf should be set to the number of
missing values plus one to obtain the correct degrees of freedom for the residual sum of squares.

For designs such as Latin squares one more of the blocking factors has to be removed in a preliminary
analysis before the final analysis using extra calls to nag anova random. The residuals from the
preliminary analysis are then input to nag anova random. In these cases irdf should be set to the
difference between n and the residual degrees of freedom from preliminary analysis. Care should
be taken when using this approach as there is no check on the orthogonality of the two analyses.

For analysis of covariance the residuals are obtained from an analysis of variance of both
the response variable and the covariates. The residuals from the response variable are then
regressed on the residuals from the covariates using, say, nag regress confid interval (g02cbc) or
nag regsn mult linear (g02dac). The results from those routines can be used to test for the
significance of the covariates. To test the significance of the treatment effects after fitting the
covariate, the residual sum of squares from the regression should be compared with the residual
sum of squares obtained from the equivalent regression but using the residuals from fitting blocks
only.

6.1. Accuracy

The algorithm used by this routine, described in Section 3, achieves greater accuracy than the
traditional algorithms based on the subtraction of sums of squares.

6.2. References

Cochran W G and Cox G M (1957) Experimental Designs Wiley.
Davis O L (ed.)(1978) The Design and Analysis of Industrial Experiments Longman.
John J A (1987) Cyclic Designs Chapman and Hall.
John J A and Quenouille M H (1977) Experiments: Design and Analysis Griffin.
Searle S R (1971) Linear Models Wiley.

7. See Also

nag regress confid interval (g02cbc)
nag regsn mult linear (g02dac)
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8. Example

The data, given by John and Quenouille (1977), is for a balanced incomplete block design with
10 blocks and 6 treatments and with 3 plots per block. The observations are the degree of pain
experienced and the treatments are penicillin of different potency. The data is input and the
analysis of variance table and treatment means are printed.

8.1. Program Text

/* nag_anova_random}(g04bbc) Example Program.
*
* Copyright 1998 Numerical Algorithms Group.
*
* Mark 5, 1998.
*
*/

#include <nag.h>
#include <nag_stdlib.h>
#include <stdio.h>
#include <nagg04.h>

#define NMAX 30
#define NTMAX 6
#define NBMAX 10
#define TMAX 4
#define TDT TMAX
#define TDC NTMAX

main()
{

double bmean[NBMAX], c[NTMAX][NTMAX], ef[NTMAX], r[NMAX],
table[4][5], tmean[NTMAX],y[NMAX];
double gmean;
double tol;

Integer irep[NTMAX], it[NMAX];
Integer irdf;
Integer i, j, n;
Integer ifail;
Integer nt, nblock;
Integer tdc = TDC;

Vprintf("g04bbc Example Program Results\n");

/* Skip heading in data file */
Vscanf("%*[^\n] ");

Vscanf("%ld%ld%ld%*[^\n] ",&n, &nt, &nblock);

if (n <= NMAX)
{
for (i = 0; i < n; ++i)
Vscanf("%lf",&y[i]);

Vscanf("%*[^\n]");
for (i = 0; i < n; ++i)
Vscanf("%ld",&it[i]);

Vscanf("%*[^\n]");

tol = 5e-6;
irdf = 0;

g04bbc(n, y, Nag_SerialBlocks, nblock, nt, it, &gmean, bmean, tmean,
(double *)table, (double *)c, tdc, irep, r, ef, tol, irdf,
NAGERR_DEFAULT);

Vprintf("\nANOVA table\n\n");
Vprintf(" Source df SS MS F\

Prob\n\n");
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Vprintf(" Blocks ");
for (j = 0; j < 5; ++j)
Vprintf("%10.4f ",table[0][j]);

Vprintf("\n");

Vprintf(" Treatments ");
for (j = 0; j < 5; ++j)
Vprintf("%10.4f ",table[1][j]);

Vprintf("\n");

Vprintf(" Residual ");
for (j = 0; j < 3; ++j)
Vprintf("%10.4f ",table[2][j]);

Vprintf("\n");

Vprintf(" Total ");
for (j = 1; j <= 2; ++j)
Vprintf("%10.4f ",table[3][j-1]);

Vprintf("\n");

Vprintf("\nEfficiency Factors\n\n");
for (i = 0; i < nt; ++i)
Vprintf("%10.5f",ef[i]);

Vprintf("\n");

Vprintf("\n%s%10.5f\n"," Grand Mean",gmean);

Vprintf("\nTreatment Means\n\n");
for (i = 1; i <= nt; ++i)

Vprintf("%10.5f",tmean[i-1]);
Vprintf("\n");

Vprintf("\nStandard errors of differences between means\n\n");
for (i = 1; i < nt; ++i)
{
for (j = 0; j < i; ++j)
Vprintf("%10.5f",c[i][j]);

Vprintf("\n");
}

}
else

{
Vprintf( "Incorrect input value of n.\n");
exit(EXIT_FAILURE);

}
exit(EXIT_SUCCESS);

}

8.2. Program Data

g04bbc Example Program Data
30 6 10 : n, nt, iblock
1 5 4
5 10 6
2 9 3
4 8 6
2 4 7
6 7 5
5 7 2
7 2 4
8 4 2
10 8 7 : y
1 2 3
1 2 4
1 3 5
1 4 6
1 5 6
2 3 6
2 4 5
2 5 6
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3 4 5
3 4 6 : it

8.3. Program Results

g04bbc Example Program Results

ANOVA table

Source df SS MS F Prob

Blocks 9.0000 60.0000 6.6667 4.7872 0.0039
Treatments 5.0000 101.7778 20.3556 14.6170 0.0000
Residual 15.0000 20.8889 1.3926
Total 29.0000 182.6667

Efficiency Factors

0.00000 0.80000 0.80000 0.80000 0.80000 0.80000

Grand Mean 5.33333

Treatment Means

2.50000 7.25000 8.08333 5.91667 2.91667 5.33333

Standard errors of differences between means

0.83444
0.83444 0.83444
0.83444 0.83444 0.83444
0.83444 0.83444 0.83444 0.83444
0.83444 0.83444 0.83444 0.83444 0.83444
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